查看: 11|回复: 0

【原】【高考数学】解题能力提升, 每日一题:第674题,三角函数有关的典型例题

[复制链接]

23万

主题

23万

帖子

71万

积分

论坛元老

Rank: 8Rank: 8

积分
714196
发表于 2020-10-17 11:37:23 | 显示全部楼层 |阅读模式
 

 

典型例题分析1:
将函数f(x)=2sin(2x+π/6)的图象向左平移π/12个单位,再把所有点的横坐标缩短到原来的1/2倍,纵坐标不变,得到函数y=g(x)的图象,则下面对函数y=g(x)的叙述正确的是(  )
A.函数g(x)=2sin(x+π/3)
B.函数g(x)的周期为π
C.函数g(x)的一个对称中心为点(﹣π/12,0)
D.函数g(x)在区间[π/6,π/3]上单调递增

解:将函数f(x)=2sin(2x+π/6)的图象向左平移π/12个单位,
可得函数y=2sin[2(x+π/12)+π/6]=2sin(2x+π/3)的图象;
再把所有点的横坐标缩短到原来的1/2倍,纵坐标不变,
得到函数y=g(x)=2sin(4x+π/3)的图象,
故g(x)的周期为2π/4=π/2,排除A、B.
令x=﹣π/12,求得f(x)=0,
可得g(x)的一个对称中心为点(﹣π/12,0),故C满足条件.
在区间[π/6,π/3]上,4x+π/3∈[π,5π/3],
函数g(x)没有单调性,故排除D,
故选:C.
考点分析;
函数y=Asin(ωx+φ)的图象变换.
题干分析:
利用函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,再利用正弦函数的周期性、单调性以及它的图象的对称性,得出结论.

典型例题分析2:
已知函数f(x)=2sinxcosx+2√3cos2x-√3.
(1)求函数f(x)的最小正周期和单调减区间;
(2)已知△ABC的三个内角A,B,C的对边分别为a,b,c,其中a=7,若锐角A满足f(A/2-π/6)=√3,且sinB+sinC=13√3/14,求△ABC的面积.


考点分析:
余弦定理的应用;三角函数中的恒等变换应用.
题干分析:
(1)运用二倍角的正弦公式和余弦公式,以及两角和的正弦公式,由正弦函数的周期公式及单调递减区间,解不等式可得;
(2)由条件f(A/2-π/6)=√3,可得角A,再运用正弦定理可得b+c=13,由余弦定理,可得bc=40,由三角形的面积公式计算即可得到所求.
 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ| Archiver|手机版|小黑屋| 师哈哈 |网站地图

Copyright © 2019-2025 Www.biiyy.Com.   All Rights Reserved.

Powered by Discuz! X3.4( 苏ICP备14049462-3号 )